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A key element in pattern recognition is the description of shape . For
two—dimensional objects (blobs), shape is conveyed by the curving of the
boundary line and is normally considered independent of scale and orientation .
The curving may be regarded as a concatentatlon of arcs of varying instantan—

f ~~~ eous radii of curvature , possibly interspersed occasionally by dlscontinui—I a  
ties. The description of shape is facilitated by se~ nenting the boundary

_~~~~~~~ line at so—called critical points — corners (discontinulties in curvature), ’
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~y points of inflection , and curvature max ima . Additional critical points
are intersections and points of’ tangency . Algorithms are described for ex-
tracting such critical points in the presence of noise. An illustration is
given showing how the critical points may be used in the development of a
shape description system.
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AFOSR - TR - 77 ü67 7
SHAPE DESCRIPTION VIA THE USE OF CRITICAL POINTS’

Herbert Fb~eeman
R.nssela.r Polyt.chnie Institut e

Troy, New tork 12181

S~~~sry types - blob maps , contour maps , flow maps , and region
maps. The four types are illustrated in Fig . 2.

A key e1~~ent in pattern recognition is the des— Different types may be overlai d to form conposite maps.
cription of shape. For two—dimensional objects
(blob.), shape is conveyed by the curving of the bound- Blob maps are maps containing onLy closed curves ,
ary line and is normally considered independent of none of which may contain another closed curve. Sone
scale and or ientation. The curving may be regarded as • of the curves may be closed via the map boundary . The
a concatent ation of arcs of varying instantaneous radii closed curves (which each bound a blob ) may touch but
of curvature , possibly interspersed occasionally by not intersect each other . There are no end points.
discontinuit les. The description of shape i~ facili-

tated by se~~emt ing the boundary line at so—called Contour maps are like blob maps except that one
critical points — corners (discontinuities in curva— closed curve asy contain one or more other closed
ture), points of inflection , and curvature maxima . curves. Two curves may be tangent to each other pro—
Additional critical points are intersections and vided one of the curves Is contained vithin the other .
points of tangency. Algorit~~s ar e described for ex- There are no end points.
tracting such critical point s in the presence of noise.
An illustration is given shoving how the critical flow maps contain only open curves and these are
points may be used in the developeent of a shape des— connected to form ooe or more tree structures. There
cription syitmu. are no loops. All curves terminate either at junc-

tions or at end points. For each connected tree
1. Introduction structure , precisely one end point coincides with the

map boundary .
The recognition of two—dimensional spatial pat-

terns is intimately linked with the classification of In region maps , the space is divided int o nutu—
shap e. Shape is the c~~posite effect of curvature; it ally exclusive areas . All lines begin and terminate
is a property of a curve, independent of scale and at junctions or are closed ( rare) .  There are no end
orientation , and refers to the manner in which the points.
curve deviate. ~~~ sons norm , such as a straight line
or a circle. We shall use the terms “line” and “curve” We identify three kinds of probl~~ tasks that
interch angeably; a line is not presumed to be straight involve shape — “matching” , “fitting” , and “classify—
unless explicitly so identified . Neither must a curve ing” . In “matching” we desire to establish equiva—
be non—st raight . Th. kinds of curve topologies of lance (up to a certain level of precision) between
interest to us are shown in Fig. 1. two curves which may be open or closed. The equivu—

lence may be on the basis of (1) shape alone,
A closed curve traces a single path without end . (2)  shape and scale, (3) shape and orientation, or

An open curve baa two distinct end points. A closed (~&) shape, scale , and orientation.
curve is always considered to be simply connected ; a
multiply—connected curve ~.s regarded as a sat of two In “fitting” we must establish that two open
or more distinct , closed curves , one of which encloses curves (which are usually part s of two different
all others. Both open and closed curves may intersect closed curves) are equival ent in scale and couplement —
other open or closed curves , as well as th emselves. ary in shape . Two curves are said to be couplementary
A closed curve has a definit , sense of direction , in shape if they are geonetrics.l.ly similar but are
which is such as to place the interior toward the traced out in the opposite sense. (The direction of
r ight . 7or an open curve , the direct ion is ar bi— tracing is det ermined by the area bounded, which by
trary . convention , is always assumed to lie toward the

right.)
The points at which curves intersect or touch

will be called junctions. Junctions are characterized “Classifying” refers to the process of assigning
by the ir rediality, whi ch is the count of the number given curves to predetermined categories. The assign—
of lines entering the junction . We speak of triredial , ment may be based solely on shape , or it may involve
quadradial , quintradial, etc. junctions. ~~cept in scale and orientation as well.
very rare cases, pictures of natural processes exhibit
oml.y triradial junctions. The existence of a quad— 2. Shape Descri pt ion
radial junction is almost always evidenc, of a man-
made f.ature. Junctions of rad.tality ~~eater then One of the d.tfficulti.s in any shape processing
four ar e most rare. task is the lack of a definitive way of describing

shape . Many investigators have devoted attent ion to
At a junction of radiality n , pairs of ad.jac.nt this task and a variety of approaches have been

curv es will form n dist inct , scm—crossing paths proposed1 7 . We shall follow a method originally pro—
~~ through the j unction. At least n—2 of these paths

must exhibit a slope discontinuity (corner ) at the posed by Attnea we and Arnou.].t end divide a curve into
J unct ion. segnents and then use relative ly simple features for

characterizing the segnents. Key to this method is an
effective se~~entat jon scheme . Later we shall alsoWe shall regard all two—dimensional patterns as consider a scheme , applicable to closed curves only ,occurring in the form of map.. Maps are special kinds that doss not require se~~entat ion.of line drawings that occur in the following four

In all that follows It will be assumed that the• This work was supported by the Air Force Office of curves have been quantized into a square lattice ofScientific Nesesre b , Directorate of Mathematical and
Information Sciences , under Grant AIOSB 76—2937. sufficient fineness to preserve the desired detail8

1
Approved for H it ~~ 1~tJ lu~~~e ;
dlstr’jbuLio~ W~lj w i t ed

L . - 

_ 
_ _  _ _~~~~~~~~~ ~~~~~ ~~~~~ .~~~~~~

-
~~~~

-———--
~~~ .

----- -: . . - - ——___________



- — —
I

AIR YORCE OFFICE OF SCIENTIFIC RESEARCH (USC)
NOTICE 07 TRANSMITTAL TO DDC
This technical report has boon reviewed and is
approved for public release lAW AIR 190—12 (7b).
Distribution is unlimited.
A. D. BLOSE

4 
Technical Xnfor~ation Officer

j

— — — — -~ 
— __________________



~~d then encoded in terms of the 8—direction chain , 3. Critical Poipts

co*ie
2
. I t  we wish to compare two chains independently of

W , shall first examine the shape matching problem. their relative scale and orientation, we must find

A tried and effective technique for matching two features in them that are Invar Iant under these para—

chains ( open or closed) is the chain correlation meters. For this purpose we shall call upon the so-.

scheme , so called because of its analogy to conves— called “critical points” of the chains.

tional signal correlation9. It is given by In classical geometry , the “critical points” of
a curve are its maxima , minima , and points of inflec—

• ( i )  
~ Z cos(a _b~,~ )t /~ 

ties. Our interest here in curves is more far—
ab n i•l. reaching , and we shall expand the concept of critical

points to include also diacontinuiti .. in curvature ,
wher, the and b1 are, resp ectively, the ordered end points, intersections (junctions), and points of

links in the two chains. Chai n correlation has the tangency. To a varying degree , these points are all
drawback , however , of being rigidly dependent on scal. well-defined and their character is unaffected by the
and orientation. To use it for matching the shape of transformations of scale and rotation .
two chains of different scale and orientation, one of
the chains must first be rotated and scaled to ‘oring Let us consider the two curves shown in Fig. 3.
it into ali~~~ent with the other . To det ermine the Visual inspection shows them to be of apparent similar
amounts of rotation and scaling required , son, further shape , though, of difference size , different orienta-
information about the two chains must be available. tion , and different sense of direction. We note that

each curve ha.. two fairly sharp d.Iscontinu.Ities in
To take a very simple example, suppose two open curvature (DIC5) - If th. two curves ar e indeed of the

chains are to be checked for a shape match, indep.nd— same shape and there is a pairvise correspondence be—
ently of scale and orientation. On. can connect the tveen the DICs, then there must be point—for—point
two end points of each chain with a strai ght line sag- shap e correspondence in the section s between the DICs.

aent . The relative length , of the two segs.nts then ~~~~~~~ of course , all shape—related features that are
provides a basis for adjusting the scale of one chain independent of scale and orientation will be the same

to that of the other; the angle between the two sag- for both.
ments establishe s the amount of rotation required to
bring the two chains into aligmaest . (J ot. that such We first connect the two DIC5 in eac h curve with
scaling and rotati ng introduces aMitional quantiza— a straight line segsent and determ ine 1t5 length.
tion noise.) After the scale and orientation adj~~~ 

Suitable features to be computed next are (1) the

ment , the two chains can be correlated against each length of the curve section between the DIC5 , ( 2 ) the

other to determine the exact degree of match. total “bay” area lying between the curve section and
the straig ht line segaent (the “bays” lie towsrd the

The simple scheme just described has serious defi— l•ft of the curve), (3) the total “peninsula” area

ciemcies. First of all, it will not work for closed ( lying toward the right of the curve ), ( 1~) the maximum

curves - Second , the echeme is overly dependent on the “bay” depth , and (5) the ~~~~1 ~~~~~ “peninsula ” depth.
pr ecise locations of the end points. Relatively All these features are , of course , independent of
slight variations here will, cause erroneous scale and orientation. To make them also independent of scale,

orientation normalizations , and result in failure of we divide each linear feature by the segsent distance

the correlation test , even for chain pairs that are ~~~~ , and each area feature , by i~~. The features are
other wise very similar in shape . Finally , the scheme illustrated in Fig. 3.
is inapplicable to the “fitting” problem, where a
section of one chain is to be shown to be of couple— Simple , efficient algorithas exist for computing
mentary shape to a section of another chain - without the foregoing featu res if the curves are rep resented
any a priori knowledge of orientation (and , possibly ,
scale U veil) . We shall nov develop a more powerful in the form of chains1’0. Observe that if for two
method which overcomes these difficult ies. curve sections the features are pair wise in close

agreement , then we have strong indication that the
Ev.n if we expect two curves to match in their ~~~~~~ are of the same shape; though , of course , a

entirety, It would be unwise to test them for match correlation or other point—by—point check is needed to

over their full length at once. Part of one chain ~~~ establish this for certain. Conversely any maj or

be missing or severely distorted by noise , or perhaps discrepancy in a feature is indicative of a difference
a pert may have been compressed . Or a chain may have in shape . If for two chains all features match except
been bent , placing its two parts at a wrong ang~.e 

that the bay features of one match to the peninsula
relative to each other. Although such effect s clearly featu res of the other , then the two chains are likely
reduce the quality of a match, they should not be to be of complementary shape and thus potential csndi-

permitted to wv rwteli evidence of good matching in dates for fitting .
other parts of the chains. The only solution to this
Is to se~~ent the chains, and to proceed with the In the foregoing example we selected DIC5 to

match em a section—by—section band s define curve sections for matching. Of ill the criti-
cal points, DIC5 (as well as junctions) are the moat

If th. chains to be matched are suppoeed to have sharply and most reliably defined. End points are

the san. scale and orientation , and cross—correlation also sharply defined; however , the ir location is less

La to be used , ee~~estation presents no problem. depend able since occlusion of pert of a curve will

Since in the correlation process one chain (or chain cause a false and point to be generated. The next

s.etiom) is anyway shifted relative to the other , best critical points to us. (if DXC. and junctions are

selection of the se~~enta tion points is virtua1~~ 
not available) are points of inflection and points of

arbitrary . A totally different approach , however , ~, 
maxiatn curvature (..w4~~~ or minima) . We shall dii-

called for if the relative scale and orientation of cuss these further in the next section in connection

the two chains are not a priori known with the deter minatIon of critical points.
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~e. Determination of Oritical Point . precisely sd links. This is readily apparent from

an inspection of Fig. 1~. The sun of the value sJunctions and end points require no special
effort for their determination; they are available over the s+l steps at a discontinuity is given by
directly from the chain data structure. Disoontini4—
ti es in curvature, however , must be extracted by con— — .5’
putation . A scheme that has been found to be eff .c . j .i—s

tive for this purpose is the lime easmect .e 5 •e 5 — e 5 ~~~~
described as follows. id i i—s— I i—s—2

We consider a chain (a1
}~~, aic{O .. - . ,T }, and and is equal to twice the net angular change at the

discont inuity.
define a straight line segnent that connects the

Th. detect ion of curvature discontinuity in the
the init iun of a1.~~~1 to the terminus of a1. The presence of noise is , of course, a somewhat subjective
length of can wary from a maxima of s~! to a m m -  process - A chain i. a special kind of straight-line

ima of 1; however , for a well—quantized curv., it approximation of a curve in which all segnent s are of
lengths 1 or v’~~, and all angu lar changes axe multiplesshould never be less than s/2. Th. actual length of of ~e5 degrees. To get above the chain qiaantization

is , of course , given by noise level, a value of s of at least M is required-
Seavier smoot hing (s> Ie ) is desirsbl•, but at some

. ((x’)2 • (~ s ) 2 )
1’~’2 increased value, valid curvatur e discontinuities will

be oothed over . In the context of a chain represen -
i tation (where tru, curvature continuity does not

where a 
~ 

a~~ exist), a discontinuity in curvature can only be de—
j.i_pel fined as the combination of three concatenated

i
a 

~~~ a1~ 
sequences of values — two during which varies
about a small mean value (or about zero), separated by
one precisel y of length ..l during which it differs

and wher e the a~~ and a13 are , respectively , the x and significantly from zero and acc~aulat .s a substantial

y components of the chain links , a~~ a
17 

£ {—l ,O ,lJ. total variat ion $~. In Fig . ~. ( b ) ,  this condition is
satisfied in the region 1.19 to i.21.. For thisThe angle between the x e~~ s end the forward

direction of the line segnent is region the accunulated incremental curvature

— tan 1 !~/X~ Lf •quals 189.2 , indicating a net CCV curvature of 9k.6
degrees. The curvature discont inuity is clearly

• cot 1 y~l/~5 
~f evident ; its location is fixed at the value of I ju st

preceding the first significant value of d~ , that is ,
and can wax y from 0 to 360 degrees. Of particular at 1.18.
Interest is the variation in this angl. as scans

In genera l, we shall refer to the prominence ofover the chain . Jot, that for a closed chain, a curvature discontinuity as its “corn.rity” anda • a  . We define
i i—n assign th . following quantitative measure :

d

~i—l — 

~‘cc ~~~~~~as the incremental curvature of the chain; it is
eq~ai to twice the mean over two successiv, angular where t1 and t2 are th. lengths of the sequences ,
differences. The incremental curvature is a smoothed to either side of the discontinuit y , over whichmeasure of curvature; the greater s , the heavier the
smoothi ng. 7cr a veil—quantised8 curve , a will range remains at a small mean value .

normally from a .imt i. of 5 to a maximom of about 13. For the purpose of shap e matching (or fitting )
This appe ars to be the oPtima ‘.nge for removing the using scale— and orientation—invariant features , only
effect of chain qusatization noise and yet preserving discont inuities with large cormerity values should b.significant fine detail. Am illustration of line— weed. U~. of discoot inuitlee with small corneritysegnent sc~~~4eg is given in ~~~~ values may lead to erroneous segnentati on.

A plot of fox a given chain—encoded curve pro— En~~~nstion of Fig . il.(b) also shows that
widee insight into the shap e of the curve . Th. plot changes sign at 1.12, Indicating the presence of ais , of cour se, independen t of the orientation of the point of inflection . Th. actual location of thecurve , and , if the abscissa is mormaliaed, .ean be made point of inflection is , of course, ./2 position.independent of scale as veil. For a fairly straight
section of a curve, will hover about zero . For a earlier since is labelled according to its leading

node. In the exemple shown , with ev5 we place theA J gentle curving to the left or r ight , 8~ viii maintain point of inflection at 1.10.
a small positive or n.gstive value , respectively . At

If th. point of inflection is prominent, that
a point of inflection , viii change sign . At a is , if there Is a clear and abrupt shift of the radius
significant curvature diacastinnity , 6~ iii take on of curvature from one side of the chain to the other ,

the preceding method will locate it • lot infrequent -a succscsics of relativel large vainee, all of the iy, ~~~~~~~~~~~~~~ a curve changes from convex to concavesane sign , and all compressed into a span of 
~~~~~~ in a slow and meanderi ng fashion . Them we

3
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cannot determine the point of inflection in this way . of curvature is subjective • and a shape comparison
If the two regions of opposing curvature (for which we scheme should not be too rIgidly dependent on such a
are seeking the point of inflection ) are both pro— loose cr iterion . Accordin gly we must also normalize
longed and strong , we may find their .&~i.& . We then the abscissa of the centroidal profile . This is doe.
cannect these two points of maxima curvature with a by setting the msximun abscissa value — corresponding
straight line and take its Intersection with the to one complete trace around the blob contouz (or,
chain, lying between the two regions of curvature , as equivalently , one pass over the complete chain ) —

the point of Inflection . If the two curvature regions arbitrarily to 100 . All other values are then
are not sufficiently strong, or are spaced too far adjusted in proport ion . The factor req uired to yield
apart , the point of inflection cannot be reliably the uniform abscissa scale will be called the horizon—
determined and we must seek other critical point s tal normalization factor . A centroida]. profile,
elsewhere , together with the blob whose shape it rep resents • is

shown in Fig. 5.
5. Centroidal ProfIle

For the blob of Fig. 5, the vector from the can—
An alternate scheme for representing the shape of troid to successive chain nodes rotates uniformly

a blob in an orientation— and scale—inv ariant manner about the centroid in the clockwise sense. This will,
is provided by the centroidal profile. It Is appli— of course , not be the case in gener al . To avoid pos.
cable only to closed curves and does not involve any sible ambiguities in the interpretation of a centroid—
sege.ntation. The wentroidal. profile is simply a al profile , we shall take profile valu es corresponding
normalized plot of the distance from the boundary to to clockwise angular rotation as being positive , and
the centroid of the blob , as a function of distance those correspondin g to counterclockwise rotation , as
along the boundary . Since the centroid’ s coordinates being negative . An illustration of this is provided
are determined by the ratio of first—order moments to by Fig. 6.
enclosed area , they are relative ly Insensitive to
noise , and the centroid thus tends to be a stable The centroids.I. profile represents the blob with—
point of reference for’ the blob . It a blob is des— out regard to scale , orientation , and (in a limited
cribed in the form of a chain , its centroid can be sense) qusntization fineness. In effect only the

rapidl y computed by means of a simple al4oritha10.

To obtain the cent roidal pr ofile for a ch ain— cal and horizontal normalization factors are known , it
coded blob , one first computes the location of the c:ntroidal profil. 

the blob chain from its
cantroid. Next one dete rm ines the distances from the
cantr oid to each chain node in sequence , beginning 

~~~~~ ~ be c d as • ~ s~’ bwith the initium of the chain The tuclidean distance 0 5 may ompere 0 a r ape y

measure could be used; however , a simpler and equally comparing both profiles

effective neasur e for the purpose at hand is provided 0$ • ..c Se ,

by th idu hai 1 h A id hal bet 
a e or g n , a cooper son s a r g

~~~ Is the stan dardized chain of minima lengt h
connect ing the two points . The computation of real- file function s and the integral of the squared differ—
due—chain length involves only the operations of addi - ences.
tion and branching , and because of its simplicity is
the preferred distance measure for the centroid.al pro— If one or both of the profiles have a maximum
file. Its use does require , however , that the that is not well defined , or have multiple max ima , a
coordinates of the centroid be quantized to th. better means for comparison is provided by convention—
nearest grid node , ther eby slight ly Increasing the al signal cross—c orr elation. This will yield a meas-
quantization noise in the blob description . ure of the similarity as well as identit y possible

errors in the origin selection .
For a closed chain , the choice of the initium is

normally arbitrary . To provide some uniformity in the It should be pointed out that the abscissa of the
select ion of the origin of the cantroidal profile, the centroid.eJ. profile represent s the (normalized ) link —
initi~a is cyclically shifted to the chain node nazi — indsz parameter I of the boundary chain. It does ~~~~~ ,

mall.y dista nt from the centroid. If the maxima is rep resent uniform angula r rotation about the centr oid ;
not unique , any of the ~~~~~~~~ may be chosen. This nor , in tact , is it a pr ecise measur e of distance
shifting of the initium provides s~~~ orientation In— along the boundary because no account is taken of the
var iance for the centroi dal profile. Sovever , if actual lengths of the links (1 or /~) .  This variation
there is more t han one maxima, there is an ambiguity in link length , together with the initial chain—
of order equal to the rna ber of maximally—distant generating qu.ntisation and the node—quanti r ation of
chain nodes . This is only a minor drawback , as we the centroid ment ioned earlie r are the chief sources
shall see shortly. of noise. Unless held to a low value by using a

sufficiently fine grid aiza , the effect of this noise
The dependence cc scale can be removed by divid- will be to reduce the quality of shape matchin g .

Ing all profi le value s by the maxima value . The Some good “feel” for adequate quantization can be
actual ~~~~~~~~~ value will be called the vertical gotten by selecting a blob that is representative of
normalization factor. Ivory cemtroidai profile thus those of Interest , quantizing It for two different
viii have a value of unity at the origin and be lass orientations, computing the corresponding centroidal
than or equal to unity elsowbere . profil es, and then comparing these. If the quality

of match is sat ibfactoi7, the quantization fineness
One additional normalization step r~~~ins. There is likely to be adequate.

is no fixed rile concerning the miaber of chain links
that are needed to describe a given blob. Guidelin es The precision of the centroidal profile can be
exist for select ing the quintisatioc grid finenes s improved - though at considerable increase in process-
that are based on the value of the minima radius of ing cost - by plotting the distance from centroi d to
curvature that is to be preserved in the result ing chain node against the angle this vector makes with

cbais . ~~~~~~~~ the selection of the s.Uast radius the x axis , and using the tuclideen distance from the

‘~~_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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tru• centroid (rather than from the node nearest the
centroid). The same origin shift and vertical normal-
ization are than applied. The abscissa r ange now
will , of course , be precisely equal to 360° and no
horizontal, normalizatIon is necessary . Although rela-
tively simple algorithms exist for calculating the
Eucl idean distances between points and the angles
relat ive to the x axis~~~, indications thus far are
that these refinements are not worth the extra
effort .
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profile
based on chain-residue distance

~~~~~~~
Fig. 6. Illustration of centroids.2. profile ~‘or a blob
rotating both positively and negatively about oentro~d.
(a) blob eh&in , (b) osotroidal profi le .
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SHAPE DZSCBI?rION VIA TUE USE OF CRITICAL POINTS

Herbert Freeman
Rensselae r Polytechnic Institute

Troy , New York 12181

S~~~sry types — blob maps , cont our maps , tlov naps , and region
maps. The f our types are illustrated in Fig. 2.

A key element in pattern recognition is the des— Different types nay be overlaid to form composite maps.
cription of shape . For two—dimensional objects
(blobs), shape is conveyed by the curving of the bound— Blob maps are maps containing only closed curves,
ary line and is normally considered independent of none of which may contai n another closed curve. Some
scale and orientation. The curving may be regarded as of the curves may be closed via the nap boundary . The
a concatenta t ion of arcs of varyi ng instantaneous radii closed curves (which each bound a blob) may touch but
of curvatu re , possibly int erspersed occasionally by not intersect each other . There are no end points.
discontinuities. The description of shape is facili-
tated by segmenting the boundary line at so-called Contour maps are like blob naps except that one
critical points — corners (diseontinuities In curva— closed curve may contain one or more other closed
tu re) • points of inflection, and curvature maxima , curves. Two curves may be tangent to each other pro—
Additional critical points are intersections and vided one of the curves is contained within the other.
points of tangency. Algorit1~ s are described for ax— There are no end pointa.
tracting such critical points in the presence of noise .
An ~ str at l on is given showing how the critical Flow maps contain only open curves and these are
points may be used in the develo~~ent of a shape des— connected to form one or more tree structures. There
cr’.ption system. are no loops . All curves terminate either at junc-

tions or at end points. For each connected tree
I. Introduction structure , precisely one end point coincides with the

map boundary .
The recognition of two—dimensional spatial pat-

terns is intimately linked with the classification of In region maps , the space is divided into nutu—
shap e . Shape is the composite effect of curvature; it ally exclusive areas . All lines begin and terminate
is a property of a curve, independent of scale and at junctions or are closed (r are) .  There are no end
orientation , and refers to the manner in which the points.
curv e- deviates from some norm , such as a straight line
or a circle. W~ shall use the terms “line” and “curve” We identify three kinds of problem tasks that
interchangeab ly ; a line is not presumed to be straight involve shape — “matching ” , “fitting” , and “classify—
unless explicitly so identified . Neither must a curve ing ” . In “matching” we desire to establish equiva—
be non—straight . The kinds of curve topologies of lance (up to a certain level of precision ) between
interest to us are shown in Fig. 1. two curves which may be open or closed. The equiva-

lence may be on the basis of (1) shape alone,
A closed curve traces a single path without end. (2) shape and scale, (3) shape and orientation, or

An open curve has two distinct end points. A closed (Li ) shape, scale, and orientation.
curve ~s always considered to be simply connected; a
multiply—connected curve is regarded as a set of two In “fitting” we must establish that two open
or more distinct, closed curves, one of which encloses curves (which are usually parts of two different
all others. Bot h open and closed curves may intersect closed curves ) are equivalent in scale and complement-
other open or closed curves , as well as themselves. ary in shape . Two curves are said to be complementary
A closed curve has a definite sense of direction, in shap e if they are geometrically similar but are
which Is such as to place the interior toward the traced out in the opposite sense. (The direction of
right . For an open curve , the dfr~ct ion is arbi— tracing is determined by the ar ea bounded , which by
tr..ry. convention , is always assumed to lie toward the

right.)
The points at which cur ves intersect or touch

will be called junctions . Junctions are characterized “Classifying ” refers to the process of assigning
by their radiality, which is the count of the number given curves to predete rmined categories. The assign—
of lines entering the junction . We speak of triradial , ment may be based solely on shap e , or it nay involve
quadx’ad.tal, quintradial , etc. junct ions . Except in scale and orientation as well.
very rare cases , pictures of natural processes exhibit
only triradial junctions . The existence of a quad- 2 . Shape Description
radial junction is almost always evidence of a man-
made featu r e. Junct ions of radiality gr eater than One of the difficulties in any shape processing
four ar e most rare, task ii the lack of a definitive way of describing

shape . Many investigators have devoted attention to
At a junction of rsd.tality n , pairs of adjacent this task and a variety of approaches have been

cur ves will, form n distinct, non—crossing pat hs proposad1
~

7 . We shall follow a method originally pro—throu~~ the junction. At least n—2 of these paths posed by Attneave and Arnoult and divide a curve intomust exhibit a slope discontinuity (corner ) at th. segments and then use relative ly simple features for
characterizing the segments. Key to this method is an
effective segmentation schema . Later we shall alsoWe shall regard all, two-dimensional patterns as consider a scheme , applicable to closed curves only ,

V occurring in the form of maps. Maps are special kinds that does not require se entatio nof line drawings that occur In the following four
In all that follows it will be assumed t hat thes work was support ed by the Air Force Office of curves have been quantized into a square lattice ofScientific Research , Directorat . of Mathematical and SInformation Sciences , under Grant AFOSH 76—2937 . sufficient fineness to preserve the desired detail
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and then encoded in term s of the 8—direction chain 1. Critical Point.
code2. I f  we wish to compare two chains independently of

We shall first examine the shape matching problem. their relative scale and orientation, we must find
A trted and effective technique for matching two features in them that are invariant under these par’a—
chains (open or closed) is the chain correlation meters . For this Purpose we shall call upon the so—
scheme , so called because of its analo~~ to cenvec— called critical points” of the chains.

tional signal correlation9. It is given by In classical geometry, the “critical points” of

a a curve are its maxima , mi n ima , and points of inflec—

~ Z cos(ai
_b
j,j)~

T/
~
e tion. Our interest here jflV curves is more far—

reaching, and we shall expand the concept of critIcal
points to include also discontinuities in curvature ,

where the ai and bi are , respectively , the ordered end points , intersections (junctions), and points of
links in the two chains. Chain correlation has the tangency. To a varying degree , the se points ar e sU.~
drawback , however , of being rigidly dependent on scale well-defined and their character is unaffected by the

and orientation. To use it for matching the shape of transformations of scale and rotation.
two chains of different scale and orientation, one of
the chains must first be rotated and scaled to bring Let us consider the two curves shown in Fig. 3.
It into aligoment with  the other. To determine the Visual inspection shows them to be of apparent similar
amounts of rotation and scaling required , some further shape , though , of difference size , diff erent orienta-
information about the two chains must be available. tion , and different sumac of direction . We note that

each curve has two fairly sharp discontinuitie~ to

To take a very simple example , suppose two ~~~~ 
curvature (D ICs ) .  If the two curves are indeed of the

chains are to ~e checked for a shape match, independ— same shape and there is a pairvise correspondence be—
ently of scale and orientation . One can connect the tween the DIC5 , than there must be p oint—for—point
two end points of each ch&in with a straight line seg— shape correspondence in the sections between the DICs.

nent.  The relat ive lengths of the two segments then And , of course , all shape—related features that are
provides a basis for adjusting the scale of one chain independent of scale and orientation vili be the sam e
to that of the other; the angle between the two seg— for both.
meats establishes the amount of rotation required to
bring the two chains into alignment. (Note that such We first connect the two DICs in each curve with
scaling and rotating introduces additional quantiza— a straight line segment and determine its length.
tion noise. )  Aft er the scale and orientation adjust— Suitable features to be computed next are C l )  the
meat , the two chains can be correlated against each length of the curve section between the DICs (2 )  the
other to det ermine the exact degree of match , total “bay” area lying between the curve section and

the straight line segment (the “bays ” lie towar d the
The simple scheme just described has serious defi— left of the curve), (3) the total “peninsula” area

ciencies. First of all , it will not work for closed (lying t oward the right of the curve), (Li) the maximum
curves. Second , the scheme is overly dependent on the “bay” depth, and ( 5 )  the maximum “peninsula” depth.
preci se locations of the end points. Relatively - 

All these features are, of course, independent of

slight variations here will cause erroneous scale and orientation. To make them also independent of’ scale,
orientation normalizations, and result in failure of we divide each linear feature by the segment distance
the correlation test , even for chain pairs that are AS , and each area feature, by ~~2, The features are
otherwise very similar in shape . Finally , the scheme illustrated in Fig. 3.
i, inapplicable to the “fitting” problem , where a
section of one chain is to be shown to be of comple— Simple , effici ent algorit~~s exist for computing
mentary shape to a section of another chain — without the foregoing features if the curves are represented
any a priori knowledge of orientation ( and , possibly,
scale as well) . We shall n ow develop a more ~~~~ , 

in the form of chains10. Observe that if for two

method which over comes these difficulties. curve -section s the features are pairvise in close
agreáent , then we have strong indication that the

Even if we expect two curves to match in their curves are of the same shape; though, of course, a
ent irety, it would be unwise to test them for match correlation or other point—by—p oint check is needed to

over their full length at once. Pert of one chain may establish this for certain. Conversely , any major
be missing or severely distorted by noise, or perhaps discrepancy in a feature is indicative of a difference
a part may have been compressed . Or a chain nay have in shape . If for two chains all features match except

been bent, piecing its two parts at a wr ong angie that the bay features of one match to the peninsula
relative to each other . Although such effects clearly features of the other , the n the two chains are likely
reduce the quality of a match, they should not be to be of complementary shape and thus potential candi—

permitted to overwhelm evidence of good matching in dates for tittin~.
other parts of the chains . Th. only solut ion to this
is to segment the chains , and to proceed with the In the foregoing example we selected DICs to

match on a section—by—section bas is. define curve sections for mat ching . Of all the criti-
cal points, DICs (as well as junctions) are the most

If the chains to be matched are supposed to have 5h~~~~~’ and most reliably defined. End points are
th e same scale and orientation , and cross—correlation also sharpl y defined; however , their location is less

is to be used , segmentation presents no problem. dependable sinc e occlusion of pert of a curve will
Since in the correlation process one chain (or chain cause a false end point to be generated . The next
section) is anyway shifted relative to the other , best critical points to use (if  DICa and junctions are
selection of the segmentation point s is virtuaVll.y not av ailable) are point s of inflection and points of
arbitrary . A tot ally different approach, however , ~~ 

maximum curvature ( maxima or minima). We shall di a—
called for if the relative scale and orientation of cuss th ese furt her In the next section in connection
the two chains are not a priori ~~~~~~~~~ with the determination of critical points .
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I
Li. Determination of Critical Points precisely 5+1 links. This is readi ly apparent frcm

an inspection of Fig. “. The sum of the valuesJunctions and end point s require no special
effort for their determination; they are available over the s+l steps at a discontinuity is given by

~ directly from the chain data structure. Discontinui — I
ties in curvature, however , must be extracted by con— Z ~putation . A scheme that has been found to be effec— j .i—s
tiva for this purp ose is the line se~~ent scan~’~’, • e’ + —described as follows . 1+1 j i—s— I — 

~i—a—2

We consider a chain {a 1
)° a e {O 7), and and is equal to twice the net angular change at the

define a straight line segment L~ that connects the 
discontinuity.

the initiun of a to the terminus of a The The detection of curvature discontinuity in t~ e
i~s+l I’ presence of noise is , of course , a somewhat subjectiveV 

lengt h of L~ can vsry from a maximum of sv’~ to a m m —  process. A chain is a special kind of straight—line
m u m  of 1; however, for a well—quantized curve , ~~ 

approximation of a curve in which all segments are of
lengths 1 or /~, and all angular changes are multiplesshould never be less than 5/2. The actual length of of 145 degrees. To get above the chain quantization

is. of course , given by noise level, a value of s of at least ~ is required.
Heavier smoothing ( s > L i )  is desirable , but at some
increased value , valid curvature discontinuities will,. ((x~)~ + (y s ) 2 ] be smoothed over . In the context of a chain represen—

I tation (where true curvature continuity does not
where — 

~ 
a~~ exist), a discontInuity in curvature can only be de—

j i—s+l fined as the combination of three concatenated
I

ajy 
sequences of values — two during which varIes

about a small mean value (or about zero), separated by
one precisely of length s+l during which It differs

and where the aim and a
11 

are , resp ectively, the x and significantly from zero end accumulai~es a substantial
y components of the chain links , aim, a

i1 c{—l,
O,l}. total variation a~. In Fig. 1 4 ( a ) ,  th’.s condition t s

satisfied in the region i.l9 to i—2 14. For thisThe angle between the x axis and the forward - -

direction of’ the line segment is region the accumulated incremental curvature •24
U tan 1’ Y~ /X~ if Ix~I ~ 

equals 189.2 , indicati ng a net CCW curvature of ?~.6degrees. The curvature discontinuity is clearly
• cot~~ X~/Y’~ if Ix~ < 

evident; its location it fixed at the value of 1 just
preceding the first significant value of 6~~, that is ,

and can vary from 0 to 360 degrees. Of particular at i.lB.
5interest is the variation in this angle as Li scans

In general, we shall refer to the prominence of
V over the chain. Note that for a closed chain, a curvature discontInuity as its “corneri’ty” and• a~~,0 . We define IIassign the rollowing quantitative measure:

~ ~ A 3
— e1,,.1 —

K~ — ‘
~~~~~

“

~~~~

‘ 

i+s+las the incremental curvature of the chain; it is
equal to twice the mean over two successive angular where t1 and t2 are the lengths of the sequences ,
differences. The incremental curvature is a smoothed to either side of’ the discontinuity, over whichmeasure of curvature; the greater s , the heavier the
smoothing . For a well—quantized 8 curve , s will r ange remains at a small mean value.

This appears to be the opt imum range for removing the using scale— and orientation—invariant features , onlyeffect of chain quantization noise and yet preservi ng discontinuities with large cornerity values shou~i besignificant fine detail. An illu strat ion of line— used. Use of discoat inu it les with smaLl cornarity

normally from a minimum of 5 to a maximum of about 13. For the purpose of shape matchi ng (or fIt t ing )

segment scanning is given in Fig. 14. values may lead to erroneous segmentation .

curve , and, if the abscissa is normalized , ~ an be ~~de point of inflection is , of course , s /2 positions

A plot of for a given chsin—encoded curve pro— Fiaaination of Fig. 114(b) also shows that
vides insight int o the shape of the curve . The plot changes sign at 1.12, indicating the presence of ais , of course , Independent of the orientation of the point of inflection . The actual location of the

independent of scale as wall. For a fairly .traight
section of a curve, will hover about zero. For a earlier since is labelled according to its leading

node. In the example shown , with a.5 , we place thegentle curving to the left or right , 6~~ will maintain point of inflection at 1.10.
a small positive or negative value , respectivel y . At

If the point of inflection is prominent, thata point of inflection , will change sign. At a is, if there is a clear and abrupt shi ft of the radius
significant curvature discontinuity , will take on of curvature from one side of the chain to the other ,

the preceding method will locat e it. 1~ot infrequent—a succession of relative ly large values , all of the ly, however , a curve changes from convex to concavesame sign , and all compressed into a span of curvature in a slow and meandering fashion . Then we
.
,
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cannot determin, the point of inflection in thi s way . of curvature is subjective , and a shap e comparison
If the two region s of opposing curvature (for which we scheme should ~ot be too rigidly dependent on such a
are seeking the point of inflection ) az’s both pro— loose criterion . Accordi ngly we must also normalize

~~~ longed and strong , we may find their maxima . We then the abscissa of the centroi&al profile. This i. done
cannect these two points of maximum curvature with a by setting the maximum abscissa value - corresponding
straight line and take its intersection with the to one complete trace around the blob contour (or ,
chain , lying between the two regions of curvature , as equiva lently , one pass over the complet e chain) —

the point of inflection . If the two curvature regions arbitrarily to 100. All. other values are then
ar e not sufficiently strong , or are spaced too far - adju sted in proportion. The factor required to yield
apart , the point of inflection cannot be reliably the uniform abscissa scale will be called the horizon—
determined and we must seek other critical point s tel normalization factor. A cantroidal. profile ,
elsewhere, together with the blob whose shape it represents , is

shown in Fig. 5.
5. Centroidal ProfIle

For the blob of Fig. 5, the vector from the cen—
An altern at e scheme for representing the shape of troid to successive chain nodes rotates uniformly

a blob in an orientation— and scale—invariant manner about the centroid in the clockwise sense. This V11. ,
is provided by the centroidal profile. It is appli— of course, not be the case in general. To avoid poe’
cable only to closed curves and does not involve any sible ambiguities in the interpretation of a centroid—
segmentation . The cantroidal profile is simply a al profile, we shall take profile values corresponding
normalited plot of the distance from the boundary to to clockwise angular rotation as being positive , and

V 
the centroid of the blob, as a function of distance those corresponding to counterclockwise rotation , as
along the boundary . Since the cent ro id’ s coordinates being negative. An illustration of’ this i. provided
are determined by the ratio of first—or der moments to by Fig. 6.
enclosed area , they are relatively insensitive to
noise , and the centroid thus tends to be a stable The centroidal profile represents the blob with—
point of reference for the blob. It a blob is des— out regard to scale, orientation, and ~in a limited
cribed in the form of a chain , its centroid can be sense ) quantization fineness. In effect only the

r apidly computed by means of a simple algoritha10. shape remains. Not e that the profile generation pro-
cess is reversible; if the origin shift and the Yer ’ti—
cal and horizontal normalization factors are known , ItTo obtain the centroidal profile for a chain— is possible to reconstruct the blob chain from itscod ed blob , one first computes the location of the centroidal profile .centroid. Next one dete rm ines the distances from the

centroid to each chain node in sequence , beginning Two blobs may be compared as to their shape bywith the initium of the chain. The Euclidean distance
measure could be used; however , a simpler and equa lly comparing their centroidal. profiles. If both profiles

have a single , well—defined maximum (which , of course ,
effective measure for the purpose at band is provided will be at the origin),  the comparison is straight—by the residue—c hain length . A residue chain between forward. Suitable measures of shap e dissimilarity aretwo point s is the standardized chain of minimum lengt h the integral of the differences between the two pro—
connecting the two points1’0 . The computation of real— file functions and the integral of’ the squared di fTer—
due—chain length involves only the operations of addi- ences.
t ion and branching, and because of it. simplicity is
the preferred distance measure for the cantroidal pro— If one or both of the profiles have a maximum
file. Its use does require , however , that the that is not well defined , or have multiple max ima , a
coordinates of the centroid be quantized to the better means for comparison is provided by convention—
nearest grid node, thereby slight ly increasing the al signal cross—correlation . This will yield a meas-
quantization noise in the blob description. ore of the similarity as well as identify possible

errors in the origin selection .
For a closed chain, the choice of the initiun is

normally arbitrary . To provide some uniformity in the It should be pointed out that the abscissa of the
selection of the origin of the cant roidal profile , the centroidal profile represent s the (normalized) link—

mally distant from the centroid. If the maximum is rep resent uniform angular rotation about the cantroid;
initium is cyclically shifted to the chain node nazi- index par ameter I of the boundary chain. It does ~~~~~~

not unique , any of the maxima may be chosen . This nor , in fact , is it a precise measure of distance
shifting of the imitium provides some orientation in- along the boundary because no account is taken of the
variance for the centroidal profile . H owever , if actual lengths of the links (1 or /~). This variation

- - there is more than one maximum , there is an ambiguity in link length, together with the initial chain—
of order equal to the number of maximally—distant generating quantization and the node—qua ntizat ion of

Th. dependence on scale can be removed by divid— will be to redace the quality of shap. mat ching .

chain nodes. This is only a minor drawback , as we the centroid mentioned earlier are the chief cources
shall see shortly. of noise. Unless held to a low value by using a

sufficiently fine grid size , the effect of this noise

ing all profil, values by the maximum value. The Sons good “feel” for adeq uate quantization can be
actual maxiaun value will be called the vertical gotten by selecting a blob that is representati ve of
normalization factor. !very centroidal profile thus those of interest , quantizing it for two different
will have a value of unity at the origin and be lass orientations, computing the corresponding centroidal
than or equal to unity elsewhere , profiles , and then comparing these. If the quality

of match is satiSfacto ry , the qusntization fineness
On. additional normalization step remains. There is likely to be adequate.

is no fixed rule concerning the number of chain links
that era needed to describe a given blob . Guidelines The precision of the cent roidal profile can be
exist f~~ selecting the quantization grid fineness improved — thou gh at consider able increase in ?r ocess—
that are based on the yalta. of the a.tniuum radius of ing cost — by platting the distance from centro id to
curvature that is to be preserved in the resulting chain node against the angle this vector makes with

chain8. Rowever , the selection of the smallest radius the z axis , and using the Euclidean distance from the
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centroid) . The same origin shift and vertical normal-
ization are then applied. The abscissa range nov

~~~ will , of course , be precisely equal to 3600 and no
horizontal normalization is necessary . Although rala-
tively simple algorithms exist for calculating the
Euclidaan distances between point s end the angles
relat ive to the x axis10, indications thus far are
that these refinements are not worth the extra
effort .
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